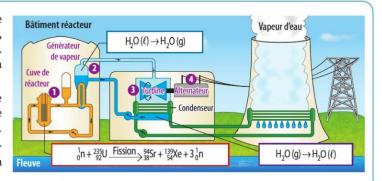
AD.8A - Transformations chimique, physique ou nucléaire?

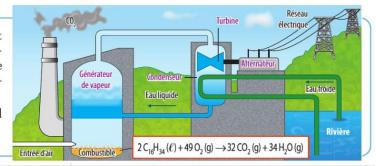

Les centrales électriques produisent de l'énergie électrique à partir de différentes formes d'énergie. Cette production nécessite des transformations qui peuvent être physiques, chimiques ou nucléaires.

Objectif de l'activité : Comment identifier la nature physique, chimique ou nucléaire d'une transformation ?

A Principe d'une centrale nucléaire

La production annuelle d'énergie électrique en France s'élève à environ $1,9\times 10^{18}$ J, une grande partie est d'origine nucléaire. Dans une centrale nucléaire, la production d'énergie se fait en plusieurs étapes :

- La réaction utilisant l'uranium libère une énergie importante permettant de chauffer un fluide dit « caloporteur ». Ainsi, 1,0 kg d'uranium libère $7,3 \times 10^{13}$ J.
- **2** Le fluide caloporteur vaporise l'eau circulant dans le circuit secondaire.
- **3** La vapeur sous pression entraîne une turbine qui se met en rotation. La vapeur se liquéfie.



4 La rotation de la turbine entraîne celle d'un alternateur qui convertit l'énergie mécanique en énergie électrique.

B Centrale thermique à fioul

La combustion du fioul, principalement constitué d'une espèce chimique de formule $C_{16}H_{34}$, permet de libérer de l'énergie thermique dont une partie est transformée en énergie électrique.

La combustion d'un kilogramme de fioul libère $4,3 \times 10^7$ J.

Transformation dans le Soleil

L'énergie libérée par le Soleil est due principalement à la transformation suivante :

$$4^{1}_{1}H + 2^{0}_{1}e \rightarrow {}^{4}_{2}He$$

L'énergie libérée par 1,0 g d'hydrogène au cours de cette transformation est d'environ $5.9 \times 10^{11} \, \mathrm{J}.$

COMPLÉMENT SCIENTIFIQUE

- Lors d'une transformation nucléaire, un ou plusieurs noyaux réactifs se transforment en de nouveaux noyaux. Les éléments chimiques ne sont pas conservés, et un rayonnement, dit « gamma » (γ) , est émis.
- Les particules neutron et électron sont notées respectivement: ⁰₀n et ⁰₋₁e.

Analyse des documents

Exploiter des informations ANA-RAIS

1 Identifier, en justifiant, la nature (physique, chimique ou nucléaire) de chacune des transformations citées dans les documents (A), (B) et (C).

Exploiter un schéma ANA-RAIS

À l'aide du schéma B, expliquer brièvement le principe de fonctionnement d'une centrale thermique à fioul.

Effectuer des calculs RÉA

- 3 a. Pour chaque combustible (fioul, uranium, hydrogène), calculer la masse nécessaire à la production électrique annuelle de la France.
 - **b.** Proposer des arguments expliquant l'intérêt que suscite la fusion de l'hydrogène.

Un pas vers le cours

Présenter sous une forme appropriée COM

Oresser un tableau indiquant, pour chaque type de transformation évoquée : son nom, sa définition et un exemple.