Chap. 7 – Stabilité des entités chimiques

11 Déterminer la composition d'un ion

| Mobiliser ses connaissances.

Un atome de magnésium Mg a un numéro atomique Z = 12, et un nombre de masse A = 24. Il forme un cation en perdant deux électrons.

- 1. Écrire la formule de l'ion magnésium.
- 2. Déterminer le nombre de protons et d'électrons de cet ion. Utiliser le réflexe 2

Déterminer la charge d'un ion

| Mobiliser ses connaissances.

Un ion possède 10 électrons, 8 protons et 10 neutrons.

- 1. Déterminer s'il s'agit d'un anion ou d'un cation.
- 2. La formule de cet ion est-elle X^{2+} ou X^{2-} ?

18 Justifier la formule d'une espèce ionique Rédiger une explication.

Le chlorure de calcium est un solide constitué d'ions calcium Ca^{2+} et d'ions chlorure $C\ell^{-}$.

• Justifier sa formule chimique $CaC\ell_2$.

Voir exercices résolus p. 88 - 89

(3) Dénombrer les électrons de valence

Restituer ses connaissances.

Les configurations électroniques de trois atomes à l'état fondamental sont données ci-dessous :

Oxygène : 1s² 2s² 2p⁴ **b** Néon : 1s² 2s² 2p⁶

Phosphore: 1s² 2s² 2p⁶ 3s² 3p³

- 1. Définir ce qu'est un électron de valence.
- Dénombrer les électrons de valence de chaque atome.

Déterminer un numéro atomique

Rédiger une explication.

· Déterminer, en justifiant la réponse, le numéro atomique des atomes dont les configurations électroniques à l'état fondamental sont :

(a) $1s^2 2s^2 2p^4$

(b) 1s² 2s² 2p⁶ 3s¹

(9) Lire horizontalement le tableau périodique

Extraire et exploiter des informations.

Dans le tableau périodique, les éléments phosphore P et sodium Na se situent dans la même période. Un atome de sodium a quatre électrons de moins qu'un atome de phosphore et sa configuration électronique est : $1s^2 2s^2 2p^6 3s^1$.

- Déterminer la période à laquelle appartiennent les éléments sodium Na et phosphore P.
- 2. Écrire la configuration électronique d'un atome de phosphore à l'état fondamental.

Un apport journalier nécessaire en fer

Extraire et exploiter les informations; effectuer des calculs.

L'hémoglobine permet le transport du dioxygène dans l'organisme. Elle contient quatre sous-unités appelées hèmes. Chaque hème contient un ion fer (II), Fe²⁺. Grâce à l'élément fer, une molécule de dioxygène O2 de l'air peut se fixer sur l'hème. Les besoins quotidiens en fer de l'organisme s'élèvent à environ 14 mg pour un homme.

- 1. Combien de molécules de dioxygène une protéine d'hémoglobine peut-elle fixer?
- 2. a. L'ion fer (II) possède 24 électrons. Donner la composition de cet ion.
- En déduire l'écriture conventionnelle du noyau d'un atome
- 3. Calculer la masse approchée d'un atome de fer.
- 4. En déduire :
- le nombre d'atomes de fer nécessaires à l'apport journalier d'un homme;
- le nombre de molécules d'hémoglobine qui, chaque jour, se lient à des ions fer (II) Fe²⁺.

Données

- $m_{\text{nucl\'eon}} = 1,67 \times 10^{-27} \,\text{kg}.$
- Nombre de masse du fer : A = 56.

Lire verticalement le tableau périodique

Mobiliser ses connaissances.

> Sodium métallique

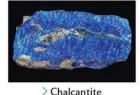
Dans le tableau périodique, l'élément sodium Na se situe juste en-dessous de l'élément lithium Li.

L'élément carbone C se situe à la même période que le lithium et deux éléments les séparent.

- 1. a. Dénombrer les électrons de valence d'un atome de lithium.
- b. En déduire le nombre d'électrons de valence de l'atome de sodium.
- 2. a. Déterminer la période des éléments carbone C et
- b. Écrire la configuration électronique d'un atome de carbone à l'état fondamental.

Donnée

La configuration électronique du tableau périodique d'un atome de lithium est 1s²2s¹.


Chap. 7 – Stabilité des entités chimiques

16 Utiliser la charge d'un ion

| Exploiter des informations.

La chalcantite est un minéral qui contient des ions sulfure S²⁻.

• Déterminer, en justifiant, le numéro de la colonne à laquelle appartient l'élément soufre S.

20 Nommer un ion

Restituer ses connaissances.

Les ions monoatomiques entrent dans la composition de nombreux médicaments ou compléments alimentaires.

ArkOcéa	an	Ampoule contenant des ions Mg^{2+} et $C\ell^-$
Nebusal	7%	Dosette contenant des ions Na^+ et $C\ell^-$
Calcifort	e	Ampoule contenant des ions Ca ²⁺ et Cl ⁻

Nommer les ions présents dans ces médicaments.

26 Calculer une énergie de liaison

Restituer ses connaissances.

Le schéma de Lewis du CO₂ est donné ci-dessous.

- 1. Justifier le fait que chaque atome de la molécule de dioxyde de carbone CO₂ respecte la règle de stabilité.
- 2. Calculer l'énergie (en USI) nécessaire pour rompre toutes les liaisons de la molécule de dioxyde de carbone
- 3. Montrer qu'une liaison double n'est pas équivalente à deux liaisons simples.

Données

	C-O	C=O
E _{liaison} (USI)	351	730

USI : unité du système international

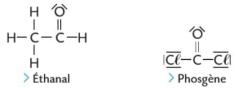
14 Identifier des atomes stables

Mobiliser ses connaissances.

 Identifier les atomes stables parmi ceux dont les configurations électroniques sont données ci-dessous. Justifier.

a He: 1s² **b** Li: 1s² 2s¹ \circ F: 1s² 2s² 2p⁵ d Ne: 1s² 2s² 2p⁶ f Na: 1s² 2s² 2p⁶ 3s¹ $^{\circ}$ Mg: 1s² 2s² 2p⁶ 3s²

Justifier un schéma de Lewis


Utiliser un modèle pour expliquer.

Le schéma de Lewis de la molécule de l'acide hypochloreux $H-\overline{O}-\overline{C}\ell$

Justifier ce schéma de Lewis.

Justifier un nombre de doublets non liants [Utiliser un modèle pour expliquer.

Des schémas de Lewis de différentes molécules sont présentés ci-dessous.

 Justifier le nombre de doublets non liants sur les atomes d'oxygène et de chlore. Utiliser le réflexe 3