AD.7C – Schema de Lewis

Une **molécule** est un groupement d'atomes liés entre eux par des liaisons. C'est un édifice électriquement neutre.

Les différentes représentations d'une molécule	Exemple : le Propane
La formule brute : permet de connaître la nature et le nombre d'atomes qui constituent la molécule. Dans la plupart des cas, on place les atomes de la formule brute dans un ordre précis: carbone, hydrogène puis les autres atomes par ordre alphabétique.	C ₃ H ₈
La formule développée permet de connaître la position des atomes les uns par rapport aux autres. Dans la formule développée d'une molécule on représente les liaisons entre les atomes par des traits. Pour une liaison simple : un trait Double : deux traits Triple : trois traits	Н Н Н I I I H — с — с — с — н I I I H Н Н
La formule semi développée : On part de la formule développée mais on ne représente plus les liaisons avec l'atome d'hydrogène. L'atome d'hydrogène se place alors à coté de l'atome avec lequel il est lié.	H ₃ C—CH ₂ —CH ₃

Le **modèle moléculaire** permet de connaître la géométrie des molécules dans l'espace.

- Les atomes sont modélisés par des sphères colorées :

Atome	C	H	O	N	Cl
	carbone	hydrogène	oxygène	azote	chlore
modèle	noir	blanc	rouge	bleu	vert

Activité 1 : Une molécule, pourquoi ça existe?

Nom	Symbole	Z	Configuration électronique	Nombre d'électrons de valence	Combien d'électrons manque-t-il à cet atome pour qu'il devienne stable ?	Nombre de liaisons possibles	Nombre de doublets non liants autour de l'atome	Nombre total de doublets entourant l'atome
Carbone	С	6						
Hydrogène	Н	1						
Oxygène	0	8						
Azote	N	7						
Chlore	Cl	17						

<u>Conclusion</u>: qu'est-ce qu'une **liaison** entre atomes?

Une liaison simple (ou <u>doublet liant</u>) correspond à la mise en commun de deux électrons entre deux atomes, chaque atome fournissant un électron. Une liaison est symbolisée par un tiret (-). Il existe également des liaisons doubles (=) ou triples (\equiv).

Un doublet non liant est cons/tué par deux électrons de valence provenant du même atome.

⁻ Les liaisons entre les atomes sont modélisées par des tiges.

Et maintenant, on s'entraîne :

Molécules	d'hyd Formul	chlorure rogène e brute : ICI	om : e nule bi H₂O		rmu	ımmo le brı IH 3	oniac ute :	diox Formul	om : ygène e brute : O 2
Atomes composant la molécule									
Nombre de liaisons pour chacun des atomes									
Construire la molécule et représenter sa formule développée									

Recommencer le même travail avec les formules brutes suivantes (représenter sa formule développée) :

H ₂	CH ₄	N_2	CO ₂	C ₂ H ₆

Activité 2 : Et le schéma de Lewis ?

En construisant les molécules, à l'aide des modèles moléculaires, compléter le tableau suivant

Le schéma de Lewis d'une molécule représente celle-ci en utilisant les symboles chimiques pour figurer les atomes et en faisant apparaître, par des tirets, les doublets d'électrons.

Les doublets d'électrons pouvant être des doublets liants ou des doublets non-liants.

Exemple : schéma de Lewis de l'eau H—O—H

Seuls les électrons externes (ou électrons de valence) interviennent dans cette représentation

Les tirets des représentations précédentes figurent des doublets d'électrons

C4H10	

C ₃ H ₈ O	
C ₂ H ₇ N	

Conclusion:

Des molécules isomères ont la même formule brute mais des formules développées (ou semi-développées) différentes. Elles n'ont pas les mêmes propriétés chimiques et physiques.

Activité 3 : A vous de jouer, compléter le tableau!

Modèle moléculaire	Formule brute	Formule développée	Formule semi développée
Méthoxyéthane			

Stabilité des entités chimiques

Acide dichloroéthanoïque		
Acide dichiol delinatioque		
Alanine		
Phénol		