AE. 13A - Approche expérimentale de la flottabilité d'un navire

Un diplôme national d'initiation à la culture maritime et aux métiers de la mer, le Brevet d'initiation à la mer (BIMer), a été créé en 2020. Le BIMer est fortement inspiré du Brevet d'initiation à l'aéronautique (BIA). De nombreuses notions abordées dans le programme de préparation au BIMer mobilisent la physique et la chimie.

Le Marco Polo de la compagnie française CMA-CGM est le porte-conteneurs le plus gros du monde (cf. figure ci-dessus). Ses caractéristiques sont impressionnantes : 396 m de long, un maître-bau de 53,5 m, un tirant d'eau de 16 m, un port en lourd de 188 470 tonnes. Il peut transporter 16 020 EVP.

Comment ces géants des mers peuvent-ils flotter?

Objectifs: déterminer les caractéristiques de la force qui permet à un bateau de flotter

Matériel:

- Un dynamomètre.
- Un solide muni d'un crochet.
- Une éprouvette graduée.
- Un pied solidaire d'une tige fixée à l'aide d'une noix.
- Une pissette.

I. ÉTUDE EXPÉRIMENTALE:

- 1- Suspendre le solide au dynamomètre fixé sur la tige.
- 2- Faire un schéma du dispositif:

Chapitre 13

Modélisation d'interactions

3-	Nommer les deux forces qui agissent sur le solide:					
	3.1	La valeur T de la force exercée par sur le solide est lue sur le dynamomètre. Elle est égale àN.				
	3.2	Le solide étant en équilibre, déterminer la valeur P du poids du solide:				
	3.3 CONS	Remplir de liquide l'éprouvette jusqu'à la graduation 170mL. SIGNES: - Pour plus de précision, terminer le remplissage à l'aide de la pissette. - Lire les graduations en se référant au bas du ménisque.				
	CON	* Immerger entièrement le solide suspendu au dynamomètre dans le liquide. SIGNES: - Ne pas immerger la tige du dynamomètre. - Éviter les contacts entre le solide et les parois de l'éprouvette.				
	3.4	Faire un schéma du dispositif:				
	3.5	Relever la valeur lue sur le dynamomètre:N.				
	3.6 On constate que la force exercée par le fil sur le solide est plusquand le solide est immergé.					
	3.7	Pour expliquer cette différence, on formule deux hypothèses: A: Le poids du solide dans le liquide n'est pas égal au poids du solide dans l'air. B: Une force exercée par le liquide agit sur le solide.				
		Pourquoi peut-on affirmer que l'hypothèse A est fausse? .				

Chapitre 3.8	* Déduire le sens de la force exercée par le liquide sur le solide:
	* Le fil restant vertical, déterminer la direction de cette force:
3.9 3.10	Déterminer la valeur F de cette force: F =
direction	Le solide immergé est soumis à une force exercée par le liquide de on et dirigée du vers le Cette force est e <u>la poussée d'Archimède</u> .
·	Détermination de la relation permettant de calculer la valeur de cette force
	elever le niveau de liquide dans l'éprouvette quand le solide est immergé mL.
2. E	n déduire le volume V de liquide déplacé par le solide: V=
	masse volumique du liquide étant égale à kg /L (1L de liquide pèsekg), culer la masse m de liquide déplacé:
 4. Cal	lculer le poids P₁ du volume de liquide déplacé (g= 9,81 N /kg):

5. Comparer F et P ₁	Wodensation a interaction
i	
Conclusion:	
La valeur de la poussée d'A	rchimède subie par le solide immergé
est au poids o	du volume de liquide déplacé.

I. - ÉTUDE DES RÉSULTATS DES DIFFÉRENTS GROUPES.

a. Compléter le tableau ci-dessous rassemblant les résultats des différents groupes:

	Nature du liquide	Poids du solide (en N)	Volume du solide (en ml)	Poussée d'Archimède (en N)	Poids de liquide déplacé (en N)
1					
2					
3					
4					
5					
6					

- b. Interprétation des résultats (Barrer les mots inexacts)
- * Des solides immergés de même poids mais <u>de volumes différents</u> subissent des poussées **égales/différentes**.
- * Des solides immergés <u>de même volume</u> mais de poids différents subissent des poussées **égales/différentes**.
- * La poussée d'Archimède subie par un solide dépend de <u>la nature du liquide</u> : plus la masse volumique du liquide est grande, plus la valeur de cette poussée est **petite/grande**.