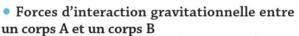
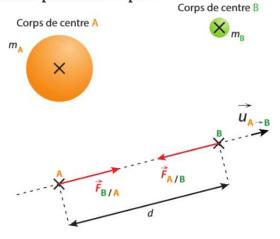

AD.13A

Modéliser une action par une force

Document 1

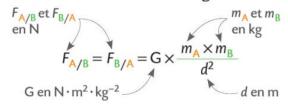
- Un système est **modélisé** par un point
- Une action exercée sur le système étudié est *modélisée* par une force.
- Cette force est caractérisée par une direction, un sens et une valeur exprimée en newton (N)


Monde réel	Système et force	Modélisation
Un livre sur une table		



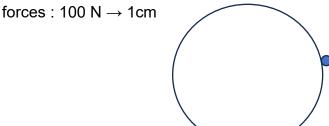
Exprimer en quelques lignes la raison pour laquelle la barque va avancer lorsque la personne lance une pierre. S'aider d'un schéma.

Doc.2: Expression de la force d'attraction gravitationnelle


Au XVIIe siècle, Isaac NEWTON (1643-1727) énonce que les corps s'attirent mutuellement. La valeur de la force modélisant l'attraction gravitationnelle augmente avec la masse des deux corps qui interagissent. Cette valeur diminue rapidement quand on les éloigne. Dans cette interaction gravitationnelle, chaque corps exerce une force attractive sur l'autre. Ainsi, la Terre attire la Lune, mais la Lune attire également la Terre avec une force de même valeur.

 $\vec{u}_{A\to B}$ est un vecteur porté par la droite (AB) dirigé de A vers B et de norme 1 (on parle de « vecteur unitaire »). Il sert à orienter la droite.

• Valeur des forces d'interaction gravitationnelle



Quelques questions

On considère une roche de masse m_r = 22 kg située à la surface de la Terre de centre T.

- 1. Calculer la valeur $F_{T/R}$ de la force d'interaction gravitationnelle exercée par la Terre sur cette roche.
- 2. En utilisant le vecteur unitaire $\overrightarrow{u_T}$, donner l'expression vectorielle de la force $\overrightarrow{F_{T/R}}$

3. Schématiser ci-dessous cette force et le vecteur unitaire $\overrightarrow{u_T}$. On prendra pour échelle des

- 4. Vérifier que la valeur du poids $\overrightarrow{P_T}$ de la roche située à la surface de la Terre est égale à la valeur de la force $\overrightarrow{F_{T/R}}$ d'interaction gravitationnelle exercée par la Terre sur la roche.
- 5. Comparer la direction, le sens et la valeur de $\overrightarrow{P_T}$ et $\overrightarrow{F_{T/R}}$. En déduire une relation vectorielle entre $\overrightarrow{P_T}$ et $\overrightarrow{F_{T/R}}$.

Données

- masse de la Terre : $M_T = 5,97.10^{24}$ kg - Intensité de la pesanteur sur Terre : $g_T = 9,8$ N.kg⁻¹

- masse de la Lune : $M_L = 7,35.10^{22} \text{ kg}$

- masse de la roche : m_r = 22 kg

- rayon de la Lune : $R_L = 1,74.10^6$ m

- rayon de la Terre : $R_T = 6,38.10^6 \text{ m}$