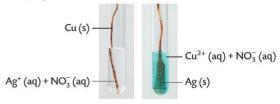
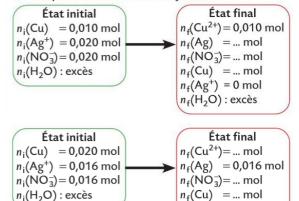

Chapitre 10

Voir exercices résolus p. 136-137

4 Identifier un réactif limitant (2) | Exploiter des informations.


Les ions cuivre (II) Cu^{2+} (aq) colorent en bleu la solution qui les contient. L'ajout d'une solution aqueuse incolore d'hydroxyde de sodium Na^+ (aq) + HO^- (aq), dans une solution aqueuse de sulfate de cuivre (II) Cu^{2+} (aq) + SO_4^{2-} (aq) (tube a) provoque la formation

d'un précipité bleu d'hydroxyde de cuivre (II) Cu(OH)₂ (s) (tube b).


- 1. Nommer les réactifs et les produits de la réaction.
- 2. Nommer les espèces spectatrices.
- 3. Identifier le réactif limitant de cette transformation.

Ecrire et ajuster une équation de réaction (1) Exploiter des informations.

Les ions cuivre (II) Cu²⁺ (aq) donnent une couleur bleue aux solutions qui les contiennent.

- 1. Écrire et ajuster l'équation de la réaction.
- 2. Compléter les évolutions du système :

Conserver les éléments et les charges Utiliser un modèle.

Recopier et ajuster les équations des réactions chimiques suivantes :

a. ... Mg (s) + ... H⁺ (aq)
$$\rightarrow$$
 ... Mg²⁺ (aq) + ... H₂ (g)

b. ...
$$Cu^{2+}(aq) + ... A\ell(s) \rightarrow ... Cu(s) + ... A\ell^{3+}(aq)$$

c. ...
$$Zn(s) + ... H^{+}(aq) \rightarrow ... Zn^{2+}(aq) + ... H_{2}(g)$$

d. ... Na (s) + ... H₂O (
$$\ell$$
)

$$\rightarrow$$
 ... Na⁺ (aq) + ... HO⁻ (aq) + ... H₂(g)

 $n_f(Ag^+) = ... mol$

 $n_f(H_2O)$: excès

e. ... MgO (s) + ... Si (
$$\ell$$
) \rightarrow ... Mg (s) + ... SiO₂ (ℓ)

g. ...
$$Pb^{2+}(aq) + ... I^{-}(aq) \rightarrow ... PbI_{2}(s)$$

h. ...
$$HCO_3^-(aq) + ... H^+(aq) \rightarrow ... CO_2(g) + ... H_2O(\ell)$$

Transformations chimiques

Judentifier un réactif limitant (1) Utiliser un modèle ; Effectuer des calculs.

L'hématite Fe₂O₃ (s) est un oxyde de fer que l'on trouve dans les roches éruptives. Il peut être obtenu par combustion du fer dans le dioxygène à haute température, selon la réaction d'équation:

$$4 \text{ Fe (s)} + 3 \text{ O}_{2} \text{ (g)} \rightarrow 2 \text{ Fe}_{2} \text{O}_{3} \text{ (s)}$$

On fait réagir une quantité $n_0(Fe) = 8$ mol de fer avec une quantité $n_0(O_2) = 9$ mol de dioxygène.

- Donner la définition du réactif limitant d'une réaction.
- Identifier le réactif limitant de cette réaction.

I Utiliser un modèle.

Le sulfure d'aluminium $A\ell_2S_3$ (s) est obtenu à partir de l'aluminium $A\ell$ (s) et du soufre S (s) selon la réaction d'équation :

$$2 A\ell (s) + 3 S(s) \rightarrow A\ell_2S_3(s)$$

1. Parmi les relations suivantes, identifier celle qui correspond à un mélange initial stœchiométrique :

(1):
$$n_0(A\ell) = n_0(S)$$
 (2): $\frac{n_0(A\ell)}{3} = \frac{n_0(S)}{2}$ (3): $\frac{n_0(A\ell)}{2} = \frac{n_0(S)}{3}$

2. Un mélange composé de 4 moles de A ℓ (s) et de 3 moles de S₂ (s) est-il stœchiométrique ?

10 Identifier un réactif limitant (2)

Utiliser un modèle ; effectuer des calculs.

L'acide citrique $C_6H_8O_7$ (aq) en solution est utilisé comme produit ménager. Il réagit avec les ions hydroxyde HO^- (aq) pour former les ions citrate $C_6H_5O_7^{3-}$ (aq) et de l'eau $H_2O(\ell)$.

On décrit ci-dessous trois systèmes à des états initiaux différents :

	C ₆ H ₈ O ₇ (aq)	HO-(aq)
Système a	15	5
Système b	5	15
Système c	5	10

Les transformations subies par ces systèmes sont modélisées par la même réaction dont l'équation s'écrit : $C_6H_8O_7(aq) + 3HO^-(aq) \rightarrow C_6H_5O_7^{3-}(aq) + 3H_2O(\ell)$.

• Déterminer le réactif limitant pour chaque mélange.