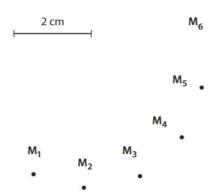

EXERCICES

2 Tracer un vecteur vitesse

Construire des vecteurs.

Quelques positions d'un système en mouvement sont représentées sur le schéma suivant :

La valeur v_3 de la vitesse à l'instant t_3 où le système est en M_3 est 4.2×10^{-1} m·s⁻¹.

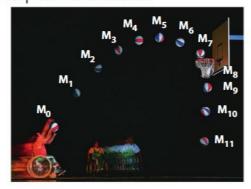

• Reproduire le schéma et représenter le vecteur vitesse \vec{v}_3 en utilisant l'échelle des valeurs de vitesse proposée : 1 cm \leftrightarrow 0,10 m·s⁻¹. Utiliser le réflexe 1

Calculer une valeur de vitesse

| Effectuer des calculs.

Quelques positions d'un système en mouvement sont représentées sur le schéma suivant :

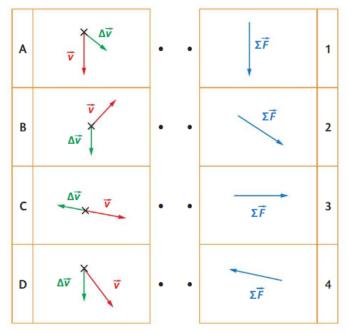
L'intervalle de temps Δt entre deux pointages consécutifs est 40 ms.


• Calculer la valeur de la vitesse à l'instant t₄ où le système est en M₄.

Tracer un vecteur variation de vitesse

Construire des vecteurs.

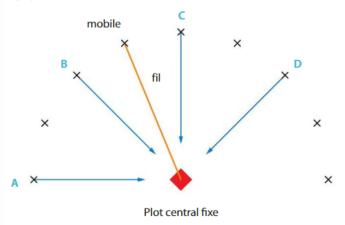
La chronophotographie du mouvement d'un ballon de basket est présentée ci-dessous.


La valeur v_1 de la vitesse du ballon en M_1 est $5.5 \,\mathrm{m}\cdot\mathrm{s}^{-1}$. La valeur v_2 de la vitesse en M_2 est $4.6 \,\mathrm{m}\cdot\mathrm{s}^{-1}$.

• Représenter le vecteur variation de vitesse $(\Delta \vec{v})_{1 \rightarrow 2}$ en utilisant l'échelle proposée : 1,0 cm \leftrightarrow 1,0 m·s⁻¹.

6 Connaître la direction et le sens de ΣF

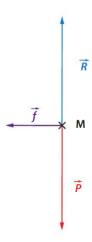
Interpréter des observations.


ullet Pour les tableaux ci-dessous, relier chaque schéma de $\Delta ec{ extbf{v}}$ et \vec{v} à la somme des forces $\Sigma \vec{F}$ qui lui correspond. Plusieurs schémas peuvent accepter la même réponse.

7 Exploiter la somme des forces ΣF

I Utiliser un modèle.

Un mobile relié par un fil à un plot central fixe est lancé. Le fil reste tendu au cours du mouvement du mobile qui se déplace sans frottement sur un support horizontal. On a représenté ci-dessous les positions occupées par le mobile à intervalles de temps égaux ainsi que la somme des forces $\Sigma \vec{F}$ appliquées à ce mobile en quatre positions A, B, C et D.


- 1. Décrire le mouvement du mobile.
- **2.** Représenter le vecteur variation de vitesse $\Delta \vec{v}$ sans contrainte d'échelle aux positions A, B, C et D.

Connaître l'influence de la masse du système (1)

• Côté maths 4, p. 223

| Mobiliser et organiser ses connaissances.

Un système assimilé à un point M de masse m glisse sur le sol. Il est soumis aux forces représentées ci-dessous à la même échelle.

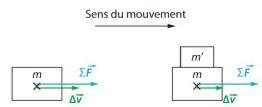
La force \vec{f} est une force de traction constante tout au long du mouvement.

- **1.** Schématiser la somme $\Sigma \vec{F}$ des forces.
- **2.** En déduire, d'après la relation approchée $\sum \vec{F} = m \frac{\Delta \vec{v}}{\Delta t}$,

la direction et le sens du vecteur variation de vitesse $\Delta \vec{v}$ et le représenter sans contrainte d'échelle.

Utiliser le réflexe 3

3. Un autre système de masse 2m est soumis à cette même somme des forces.


Pour une même durée, comparer les vecteurs variation de vitesse de ces deux systèmes.

Connaître l'influence de la masse du système (2)

Rédiger une explication.

Dans les deux situations schématisées ci-dessous, les deux systèmes, respectivement de masse m et m+m', sont soumis à la même somme des forces $\Sigma \vec{F}$.

Les vecteurs variation de vitesse ont été représentés avec la même échelle.

• Justifier la différence entre les deux vecteurs variation de vitesse.